
Controllers with Multisim

Dr. Julio R. García Villarreal San José State University San José, California - USA

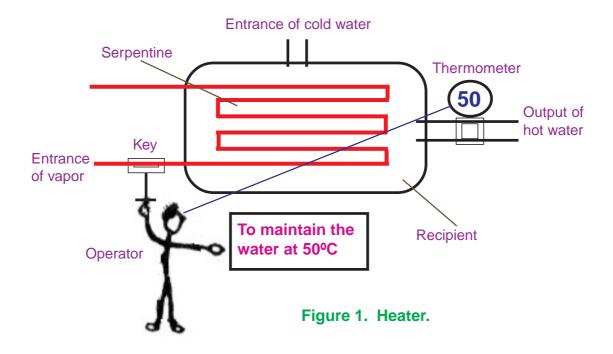
Page

Index

Process Control	4
Manual control of a process	4
Variables of Process Control	5
Block Diagram of Process Control	5
Types of Process Control	8
The electronic Controller	10
The electronic Controller in Multisim	10
1. Voltage Gain Block	12
2. Voltage Differential	14
3. Voltage Integrator	16
4. Voltage Summer	18
Example of simulation of a Process Control	20
Tabulation of the signal of the Input Interface	22
Tabulation of the signal of the Set Point	23
Storage of the signal of the Input Interface in Multisim	24
Storage of the signal of the Set Point in Multisim	26
The Summer with the signals of the input Interface and Set Point	28
The Proportional Controller with the Summer and input signals	30
Activation of the nodes in the circuit, with the Multisim	32
Transient Analysis Configuration of the Proportional Controller	34
Presentation of the signals in the Proportional Controller	38
Width and color for the presentation of the output signals	39
The Derivative Controller with the Summer and input signals	42
Configuration of the Derivative Controller's parameters	44
Transient Analysis Configuration of the Derivative Controller	45
Presentation of the Derivative Controller's signals	49
The Integral Controller with the Summer and input signals	50
Configuration of the Integral Controller's parameters	52
Transient Analysis Configuration of the Integral Controller	53
Presentation of the Integral Controller's signals	57
The Proportional Integral Derivative (PID) Controller	58
Determination of the PID Controller's nodes	59
Transient Analysis Configuration of the PID Controller	60
Presentation of the PID Controller's signals	63

This material is based upon work supported by the National Science Foundation under Grant No. 0411330.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation (NSF).


The Transient Analysis studies the circuits' responses in very short times. On the following pages and using Multisim, the circuits' responses are described when we apply variable signals with a period of ten milliseconds.

Process Control

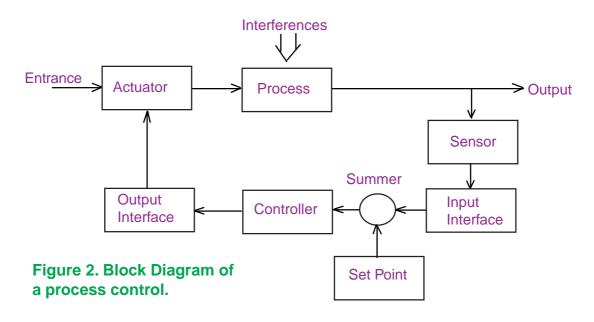
The measurement and the control of the process are essential parts of all industry because it improves the quality, the quantity increases and it reduces the cost of manufacturing.

Manual Control of a Process

Figure 1 describes the manual control of a heater where we need to obtain, at the output, hot water at a temperature of 50° C.

The cold water contained in the recipient warms by means of the heat provided by the vapor that circulates for a pipe in serpentine form. In figure 1 we can see that the operator is observing the reading of the thermometer and compares it with the poster that indicates him **«To maintain the water at 50° C.»**

If the thermometer marks more than 50° C, the operator will close the key of entrance of the vapor little by little until reaching the temperature of 50° C. If the thermometer registers less than 50° C, the operator will open the key of entrance of the vapor little by little until the water reaches the temperature of 50° C.


Variables of the Process Control

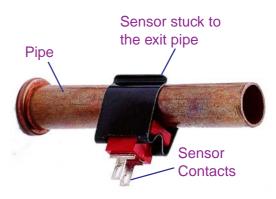
In every process control we find the following variables:

- **Controlled variable:** In figure 1, it is the temperature of the output water.
- Manipulated variable: In figure 1, it is the entrance of the vapor. Controlling the flow of the vapor, we will regulate the output of the process.
- Variable interference: They are all the parameters that destabilize the system. In our example of figure 1, the variable interference is the flow of entrance of cold water.

Block Diagram of the Process Control

The block diagram of figure 1 is the following:

Where:


Entrance:	it corresponds to the entrance of the vapor.
Process:	it is equivalent to the tank of the heater.
Interferences:	it is equal to the entrance of cold water.
Sensor:	it replaces to the thermometer.
Set Point:	it is equivalent to the poster that indicates to the operator to maintain
	the temperature of the water to a certain value.
Summer:	it is equivalent to the comparison that the operator executes between
	the reading of the thermometer and the poster.
Controller:	it replaces the operator.
Actuator:	it is equivalent to the key that controls of entrance of the vapor.

The Sensor

It measures the output of the Process and transforms it in an electric signal. The sensors can be of: level, pressure, temperature, flow, viscosity, etc

Input Interface

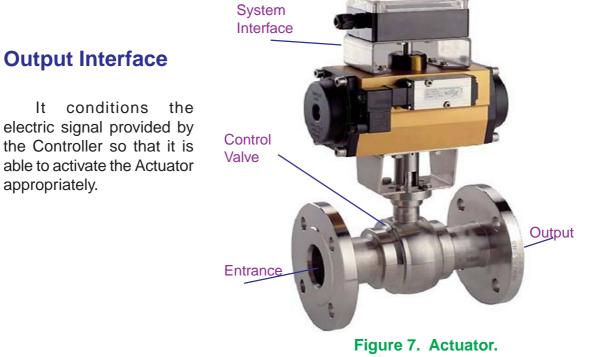
It conditions the electric signal provided by the Sensor and converts it to an acceptable format for the Controller.

Set Point

Also called desired value or reference point, is a value that the Controller should try to maintain in the output of the process.

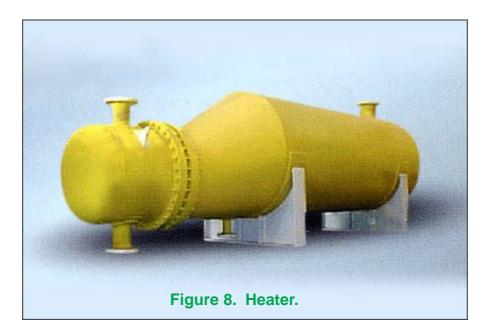
Figure 4. Instruments adjusted to the Set Point value.

Voltage Summer


It adds the signal voltage coming from the Input Interface with the reference value (Set Point) and sends it to the Controller.

The Controller

It processes the information coming from the Summer and it produces an output signal (corrected signal) that sends it to the Actuator by means of the Output Interface



The Actuator

Also called **element of final control**, it alters the input variable (in our example it is the vapor) to stabilize the output of the process.

Types of Control Systems

- 1. Programmable Logical control (PLC).
- 2. Distributed Control system (DCS).
- **3.** Personal computers (**PC**).

Programmable Logical Control (PLC)

It is a device that was developed to replace the sequential circuits of relays for the control of processes. The **PLC** works by checking its inputs and depending on its states, it changes its outputs to **ON/OFF**. The user enters a program, via software, with the results that he wants to obtain.

Figure 9. Typical PLC.

Distributed Control System (DCS)

They are based on electronic circuits or special dedicated modules for the independent control of the temperature, pressure, flow or other variables.

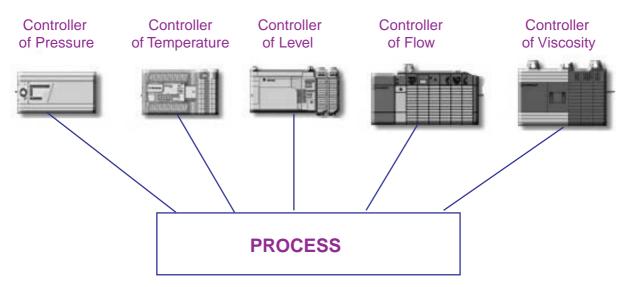


Figure 10. Distributed Control system.

Personal Computers (PC)

Monitor the whole industrial process calculating in real time the reference points or Set Points and send them to the Voltage Summers of individual Controllers, external to the computer.

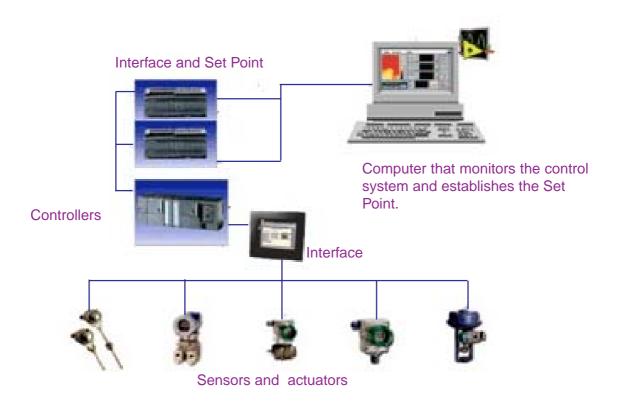
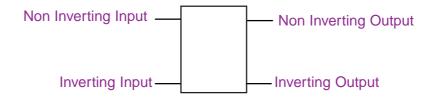


Figure 11. Combination of the Distributed System and the PC.

The Electronic Controller

The Electronic Controller is made up of one or more Operational Amplifiers (Op Amps) configured as an Inverter, Integrator, and Differentiator. These configurations of the Op-Amp are known with the names of Proportional (P), Integral (I), Derivative (D) controllers, respectively.


In practice two or more control actions are usually used, such as Proportional-Integral (PI), Proportional-Derivative (PD), Proportional- Integral-Derivative (PID), etc.

The Electronic Controller in Multisim

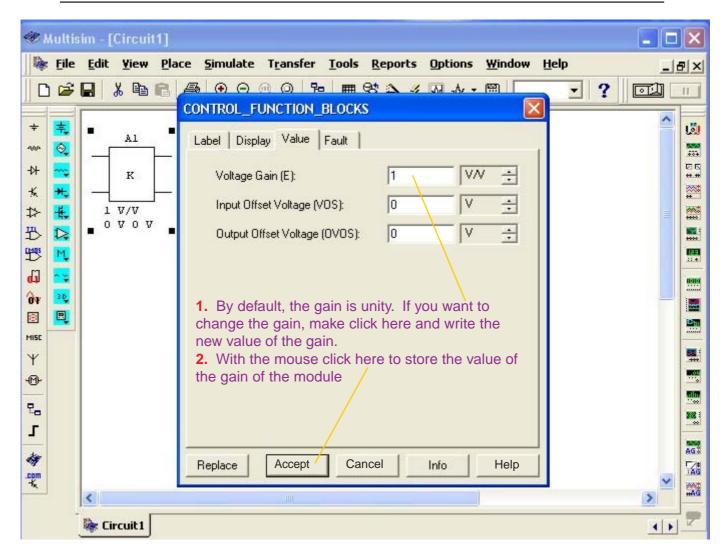
Multisim incorporates a series of modules for the simulation of the process control; among them we have:

- **1.** Voltage Gain Block or Proportional Controller.
- 2. Voltage Differential or Derivative Controller.
- **3.** Voltage Integrator or Integral Controller.
- 4. Voltage Summer or Summer.

All the control modules, except the Voltage Summer, have the following diagram: :

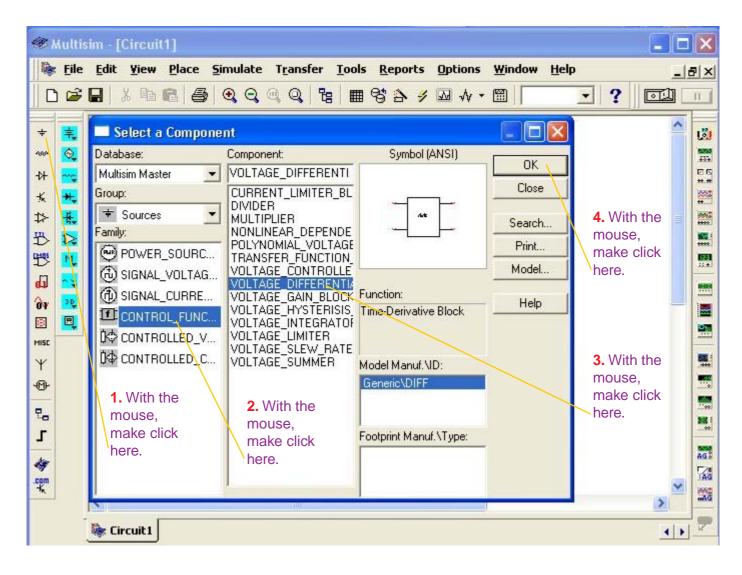
Note: The unused output and input should be connected to ground.

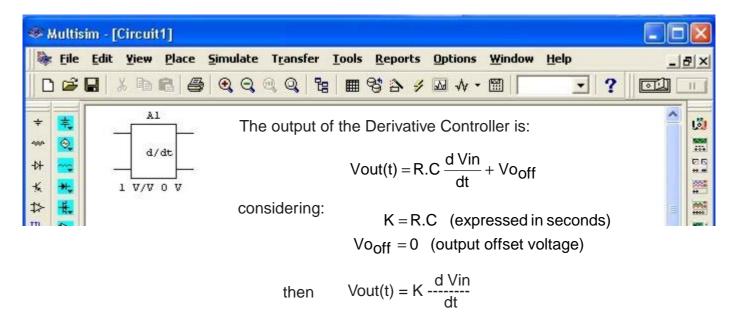
To access to the control modules or Controllers, from Multisim, proceed this way:


🧇 Multis	im - [Circ	uit1]								
🛛 🔯 Eile	Edit Vie	w <u>P</u> lace	Simulate	Transfer	Tools	<u>R</u> eports	Options	<u>W</u> indow	<u>H</u> elp	ð×
0 🖻	🔒 % 🖻	8	• • •	@, Q, 1		¥ 6 ¥	₩ *		• ?	н
+ ≈ × × ☆			h the mo bear.	use, mak	e click ł	nere and	the wind	ows sho	wn will	 13 13 19 19

		mulate l <u>r</u> ansfer <u>l</u> oc €,	ols <u>R</u> eports Options ■ 🕲 🏠 🥖 😡 🚸 ·		ؤا۔ _ الآت ? •
+ <mark>™</mark> ≼ ∓ ≽ ∓	Select a Compone Database: Multisim Master Group: Sources Family: POWER_SOURC SIGNAL_VOLTAG SIGNAL_CURRE CONTROL_FUNC CONTROLLED_V CONTROLLED_C With the mouse, make click here. This window will appear with the control modules	Component: CURRENT_LIMITER_BL DIVIDER MULTIPLIER NONLINEAR_DEPENDE POLYNOMIAL_VOLTAGE TRANSFER_FUNCTION_ VOLTAGE_CONTROLLE VOLTAGE_DIFFERENTI/	Symbol (ANSI)	OK Close Search Print Model Help	

Next, we will describe each one of the Controllers.


1. Voltage Gain Block (Proportional Controller)


æ	Multis	im - [Circuit1]					X
	File	Edit Yiew Place Si	mulate T <u>r</u> ansfer <u>T</u> oo	ls <u>R</u> eports <u>O</u> p	tions <u>W</u> indow	<u>H</u> elp	_ 8 ×
[3 🖻	🖬 X 🖻 🖻 🞒	Q Q @ Q B B	🖩 😚 🏠 🥖 🖾		- ? 🖪	<u>.</u>
· · · · · · · · · · · · · · · · · · ·		Select a Component Database: Multisim Master Group: Sources Family: POWER_SOURC SIGNAL_VOLTAG SIGNAL_VOLTAG SIGNAL_CURRE CONTROLLED_V CONTROLLED_V CONTROLLED_C Not controlled	Component: VOLTAGE_GAIN_BLOC CURRENT_LIMITER_BL DIVIDER MULTIPLIER NONLINEAR_DEPENDE POLYNOMIAL_VOLTAGE TRANSFER_FUNCTION VOLTAGE_CONTROLLE VOLTAGE_DIFFERENTI/ VOLTAGE_HYSTERISIS VOLTAGE_HYSTERISIS VOLTAGE_INTEGRATOF VOLTAGE_LIMITER VOLTAGE_SLEW_RATE VOLTAGE_SUMMER 2. With the mouse, make click	Symbol (ANSI	OK Close Search. Print Model. Help		
*						_	
		🖗 Circuit 1					
Multis Image: Second system Image: Second system Image: Second system Image: Second system	Edit	<u>Y</u> iew <u>P</u> lace <u>S</u> imulate		ports Options			
+ ~~ + + + + ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		R multiplyin Strict Vout Cons To er	Voltage Gain Bloc g the input voltage ly, the equation of t = k (Vin + Vi _{off}) + Vo idering Vi _{off} = Vo _{off} = nter the parameter of e symbol of the bloc	times the gair the Voltage Ga D _{off} = 0 ==> Vout of the gain (K)	n (K) of the m ain Block is: = K (Vin)	odule.	

-	Multis	sim - [Circuit1]						l	_ 🗆 🛛
	<u>F</u> ile	Edit Yiew Pla	ace <u>S</u> imulate	e T <u>r</u> ansfer	<u>T</u> ools <u>R</u> eports	Options	<u>Window H</u> el	lp	_ 8 ×
] C	ם נ		B Q Q	@ Q 18	■ \$* <u>}</u>	₩ *		- ? 🖪	
+ ~ + × ☆ ☆ ☆ ¦ ~ * * * + * * * * * * * * * * * * * * *		A1 R S V/V 0 V 0 V		\ (n case that yo value of the ga example K = t shown in the s	ain of the r 5), this cha	nodule ange will be		


2. Voltage Differential (Derivative Controller)

This equation indicates that the output of the Derivative Controller is the product of the derivative of the input voltage times the constant K. For this reason the constant K is known as **voltage gain**.

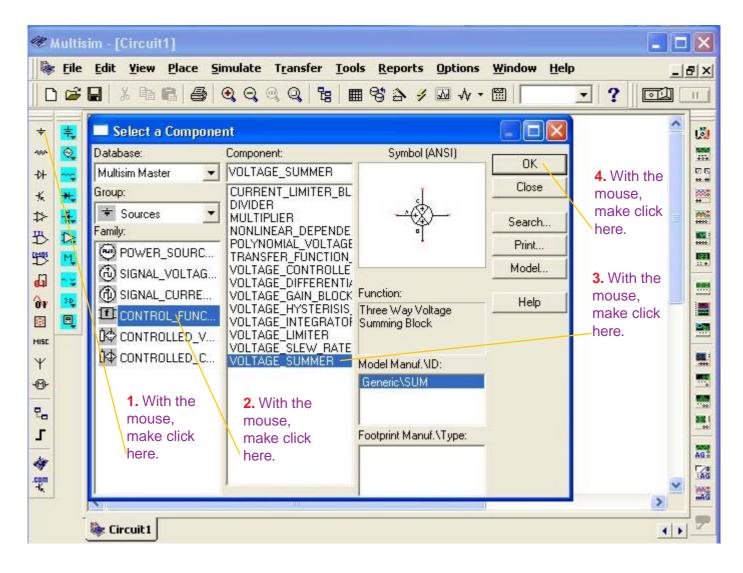
$$Vout(t) = K - \frac{d Vin}{dt}$$

5. After having entered all the parameters, with the mouse, make click in **Accept**.

3. Voltage Integrator (Integral Controller)

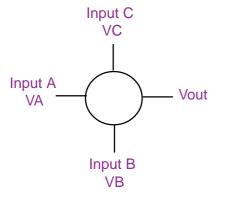
Place Simulate Transfer			≞∟ _ ©∭ ? ∙
CURRENT_LIMITER_ DIVIDER MULTIPLIER NONLINEAR_DEPENI POLYNOMIAL_VOLTA POLYNOMIAL_VOLTA POLYNOMIAL_VOLTA POLYNOMIAL_VOLTA POLYNOMIAL_VOLTA TRANSFER_FUNCTIC VOLTAGE_DIFFEREN VOLTAGE_DIFFEREN VOLTAGE_GAIN_BLO VOLTAGE_HYSTERIS VOLTAGE_LIMITER VOLTAGE_SLEW_RA VOLTAGE_SUMMER the 2. With the	BL DE GE NN LE CK Function: Time-Integration Block	OK Close Search Print Model Help	4. With the mouse, make click here.

🧇 Mul	ltisim - [Circuit1]	
🕸 Ei	ile <u>E</u> dit <u>Y</u> iew <u>P</u> lace <u>S</u> imulate T <u>r</u> ansfer <u>T</u> ools <u>R</u> eports <u>O</u> ptions	<u>Window Help _ 문 ×</u>
	≝ 🖬 👗 🞒 🔍 Q 🤍 Q 階 🖩 😚 🏷 📈 사 ▾	
÷ 🛓		
₩ 🧐	Vout(t) = $\frac{1}{R.C} \int (Vin(t) - Vin(t)) dt$	(t) + Vi _{off}) dt + Vo _{ic}
北日本		
di) 🔁	1	ut offset voltage)
Ôγ 🔐	VO. = 0 (OUL	out initials conditions)
міяс Т	then $Vout(t) = K \int vin(t) dt$	


This equation indicates that the output of the Integral Controller is the product of the integral of the input voltage times the constant K. The constant K is known as **voltage gain**.

 $Vout(t) = K \int vin(t) dt$

	tisim - [Circuit1]		_ 🗆 🗙
Eil	e <u>E</u> dit <u>Y</u> iew <u>P</u> lace		_ & ×
	F 🖬 👗 🖻 🖪 🤞	● ④ 즉 즉 ♀ Ⅰ 🗄 📾 영 🍐 🖉 ⋈ 🔹 🗐 💽 ?	
	A1 J 1 V/V 0 V 1. To enter the	CONTROL_FUNCTION_BLOCKS Image: A general and a genera and a general and a general and a general	the make re and te the - Vcc olts.
.com	<	Replace Accept Cancel Info Help	× *
	Eircuit1		


5. After having entered all the parameters, with the mouse, make click in **Accept**.

4. Voltage Summer (Summer)

The output of the summer is:

Vout = Kout [KA (VA + VA_{off}) + KB (VB + VB_{off}) + KC (VC + VC_{off})] + Vo_{off}

considering:

 $VA_{off} = 0$ (input A offset voltage) $VB_{off} = 0$ (input B offset voltage) $VC_{off} = 0$ (input C offset voltage) $Vo_{off} = 0$ (output offset voltage) then:

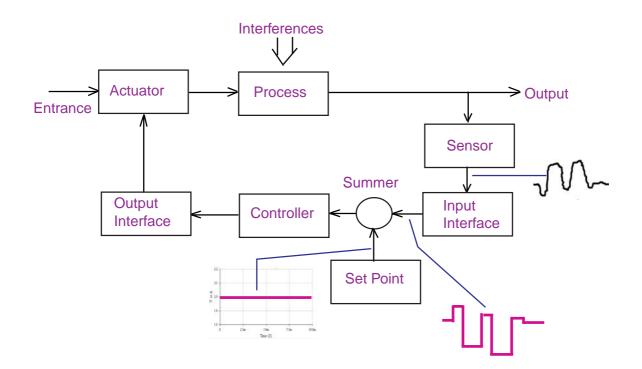
Voltage Summer Block (Summer)

Vout = Kout (KA.VA + KB.VB + KC.VC)

Vout = Kout (KA.VA + KB.VB + KC.VC) (equation of the summer)

where: KA: Gain of input A. KB: Gain of input B. KC: Gain of input C. Kout: Output gain. VA, VB, VC: Input signals.

If we consider KA = KB = KC = Kout = 1 then the output of the Summer is similar to the arithmetic sum of the input signals.

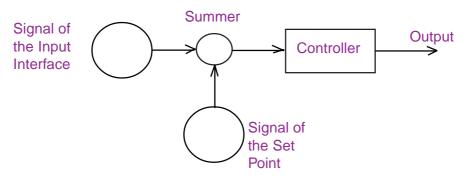

To enter the parameters of the Summer, proceed in the following way:

Multisim - [Circuit1] Image: File Edit View Place Simulate Transfer Tools Reports Options Window Image: File Edit View Place Simulate Transfer Tools Reports Options Window Image: File Edit View Place Simulate Transfer Tools Reports Options Window Image: File Edit View Place Simulate Transfer Tools Reports Options Window Image: File Edit View Place Simulate Transfer Tools Reports Options Window Image: File Edit View Place Simulate Transfer Tools Reports Options Window Image: File Edit View Place Simulate Transfer Tools Reports Options Window Image: File Edit View Place Simulate Transfer Tools Reports Options Window Image: File Edit View Place Simulate Transfer Tools Reports Options Window Image: File Edit View Place Simulate Transfer Tools Reports Options Window Image: File Edit View Place Simulate Transfer Tools Reports Options View Place Simulate Transfer Tools Place Simulate Tools	nouse, make click write the value of the B.		
Image: Second Secon		& Multisim - [Circuit1]	SE N
★ ★ ★ ★ B Label Display Value Fault Input A Offset Voltage (VAOS): 0 V T> 1 V/V Input B Offset Voltage (VBOS): 0 V Input B Offset Voltage (VCOS): 0 V ÷ Input A Gain (KA): 1 V/V ÷ Input B Gain (KB): 1 V/V ÷ Input C Gain (KC): 1 V/V ÷ Input C Gain (KC): 1 V/V ÷ Input C Gain (KC): 1 V/V ÷ Uput Gain (K): 0 V ÷	Help	😻 Eile Edit Yiew Place Simulate Transfer Tools Reports Options Window He	
WM Q Imput A Diffset Voltage (VAOS): 0 V Imput A Diffset Voltage (VAOS): 0 V Imput A Diffset Voltage (VAOS): 0 V Imput B Diffset Voltage (VBOS): 0 V Imput B Diffset Voltage (VCOS): 0 V Imput A Gain (KA): 1 V/V Imput B Gain (KA): 1 V/V Imput B Gain (KB): 1 V/V Imput C Gain (KC): 1 V/V Imput C Gain (K): 1	- ? 💷 🗉		
Replace Accept Cancel Info Help	3. With the mouse, make click here. Then write the yalue of the gain of input C. 4. With the mouse, make click here. Then write the value of the Output Gain.	A A B 1 V/V 0 V 0 V 0 V 0 V 0 V 0 V 0 V </td <td>☆★★☆☆♥♥₽★★★☆♥♥₽</td>	☆★★☆☆♥♥₽★★★☆♥♥₽

5. After having entered all the parameters, with the mouse click in **Accept**.

Example of Simulation of a Process Control

In the block diagram of figure 12, we observe the signals that provide the Sensor, the input Interface and the Set Point. The resultant of the sum of the signals of the input Interface and the Sep Point, carried out by the Summer, is applied to the Controller's input.


Figure 12. Block Diagram of a process control with signals of the Sensor, Input Interface and Set Point.

Next we will simulate, with Multisim, the behavior of the Summer and the Controller in their different configurations or control actions (Proportional, Integral, Derivative executing the following steps:

Step 1: We tabulate the signal of the Input Interface and the Set Point.

Step 2: We store the tabulation of the signals in Multisim.

Step 3: With Multisim we'll draw the following circuit:

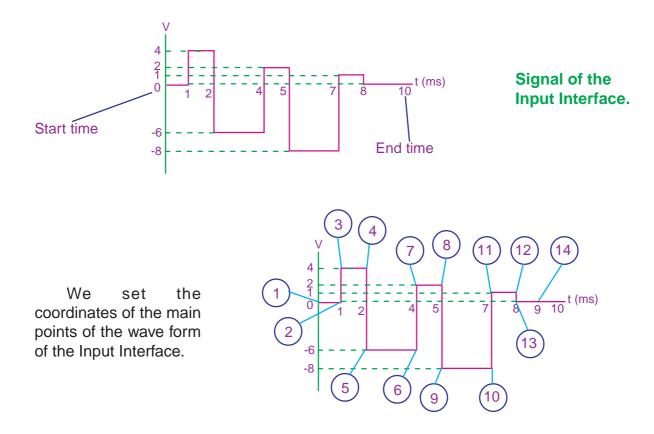
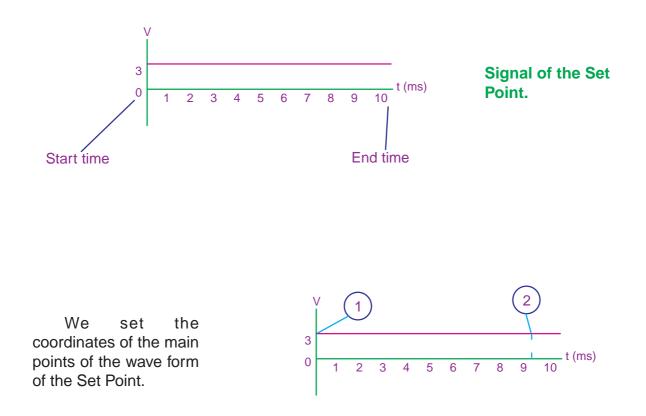


Figure 13. Controller Circuit with two signals (Input Interface and Set Point) and a Summer.

- **Step 4:** We incorporate the Proportional Controller (P) and we will observe the signals of the Input Interface, Set Point, Summer and output of the Proportional Controller.
- Step 5: We replace the Proportional Controller for the Derivative Controller (D) and we will observe the signals of the Input Interface, Set Point, summer and output of the Derivative Controller.
- **Step 6:** We replace the Derivative Controller for the Integral Controller (I) and we will observe the signals of the Input Interface, Set Point, summer and output of the Integral Controller.
- **Step 7:** We insert the Proportional, Derivative and Integral Controllers (PID) and we will observe the input and output signals of the PID.

To continue with our example, consider the following:

- **1.** The Proportional Controller (P) will have a unity gain.
- The Derivative (D) and Integral (I) Controllers will have an RC constant = 1 millisecond.
- 3. The Summer will have a unity gain.
- 4. The whole electronic system will have a dual-supply of +VCC = 15 V and Vcc = -15 V
- 5. In all the Controllers, use the non-inverting input and the inverting output.


Tabulation of the signal of the Input Interface

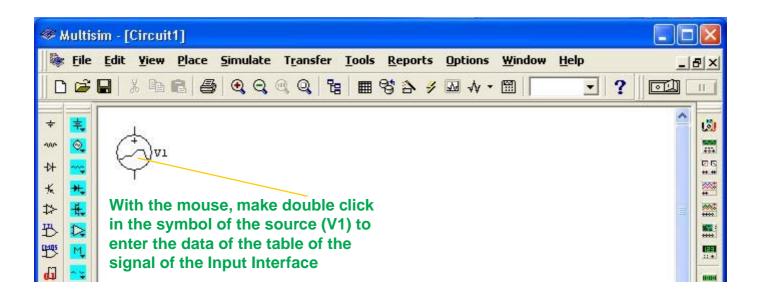
In a table, we write the coordinates of the fixed points.

Notes

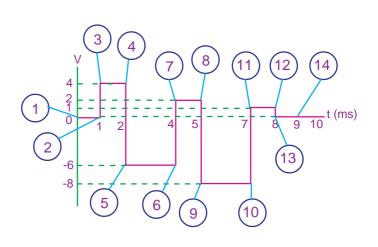
- **1.** In the table, the Time is specified in seconds and the Voltage in volts.
- Multisim works with continuous functions. For this reason, observe that in points 3, 5, 7, 9, 11 and 13, we have added a millionth of second to indicate to Multisim that the signal is a continuous function (remember that in the study of Limits, when for a single value in the «x» axis it corresponds two different values in the «y» axis, the function is discontinuous)

Point	Time (s)	Voltage
1	0	0
2	0.001	0
3	0.001001	4
4	0.002	4
5	0.002001	-6
6	0.004	-6
7	0.004001	2
8	0.005	2
9	0.005001	-8
10	0.007	-8
11	0.007001	1
12	0.008	1
13	0.008001	0
14	0.009	0

Tabulation of the signal of the Set Point


In a second table, we write the coordinates of the points indicated in the previous step.

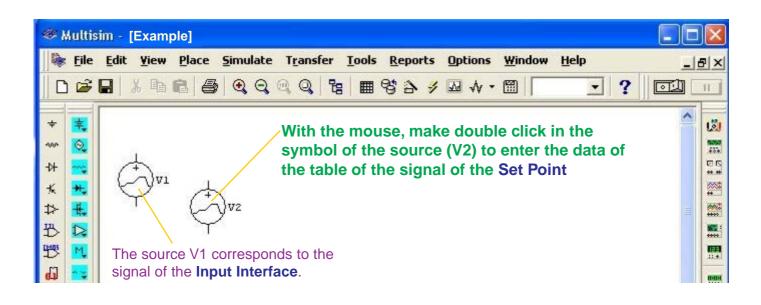
Point	Time (s)	Voltage
1	0	3
2	0.009	3


Since the Set Point signal is a straight line, it will be enough with taking two points (at the beginning and the end of the straight line) so that it is mathematically defined.

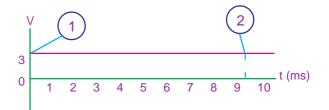
Storage of the signal of the Input Interface in Multisim

🥮 Multis	im - [Circuit1]					×
ile 🕞 🕞	Edit Yiew Place Simu	- war	ls <u>R</u> eports Options ■ 😚 🏠 🥖 💹 🚸 ▾	200	• <u>-</u> 	Ð×
↑ ~ ~ ~ × ☆ ↓ ? ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Multisim Master P Group: Sources C Family: POWER_SOURC GSIGNAL_VOLTAG SIGNAL_CORRE CONTROL_FUNC CONTROLLED_V CONTROLLED_C	mponent: IECEWISE_LINEAR_V C_VOLTAGE M_VOLTAGE CLOCK_VOLTAGE XPONENTIAL_VOLTAGE M_VOLTAGE IECEWISE/LINEAR_VO VULSE_VOLTAGE VHITE_NOISE 3. With the mouse, make click here. 2. With the mouse, nake click here.	Symbol (ANSI)			
-	🔯 Circuit 1				41] ?

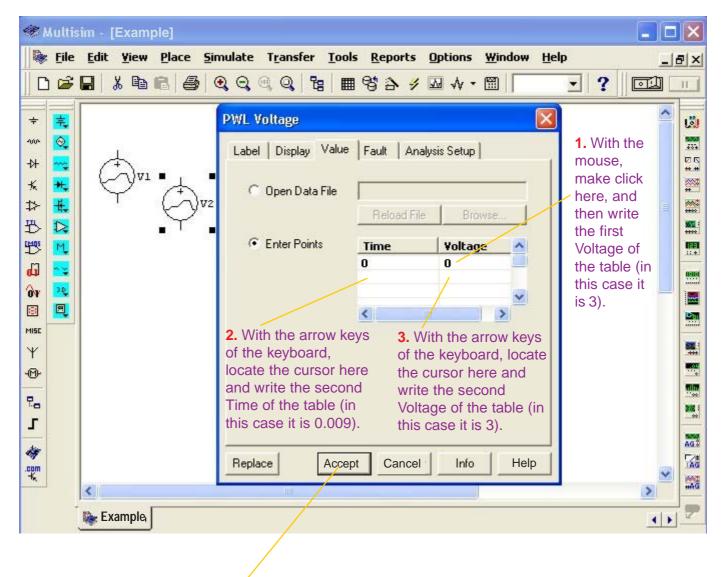
Point	Time (s)	Voltage
1	0	0
2	0.001	0
3	0.001001	4
4	0.002	4
5	0.002001	-6
6	0.004	-6
7	0.004001	2
8	0.005	2
9	0.005001	-8
10	0.007	-8
11	0.007001	1
12	0.008	1
13	0.008001	0
14	0.009	0


Tabulation of the signal of the Input Interface

🧼 Mu	ıltisim - [Circuit	1]	🛛
11	<u>File E</u> dit <u>Y</u> iew		indow Help
🗅 (В 🚭 Q Q Q 2 18 1 8 8 2 9 9 № 4 • 6	
	• •	PWL Voltage 🛛 🔀	<u></u>
125	v 1	Label Display Value Fault Analysis Setup	2. With the arrow
* 🕨	🖶 🕴 📍	🔿 Open Data File	keyboard, locate
0.00 125	ŧ. ≥	Reload File Browse	the cursor here and write the second
	4	Enter Points Time Voltage O O	Voltage of the table (in our case it is
			zero).
¥		1. With the mouse, make click here, and	4. With the arrow keys of the keyboard, locate
-®-		then write the second Time of the table (in	the cursor here and write the third Voltage
2 <u>8</u>		our case it is 0.001).	of the table (in our
4		Replace Accept, Cancel Info Help	forth.
.com	<		>
	Circuit 1	3. With the arrow keys of	
		the cursor here and write table (in our case it is 0.	

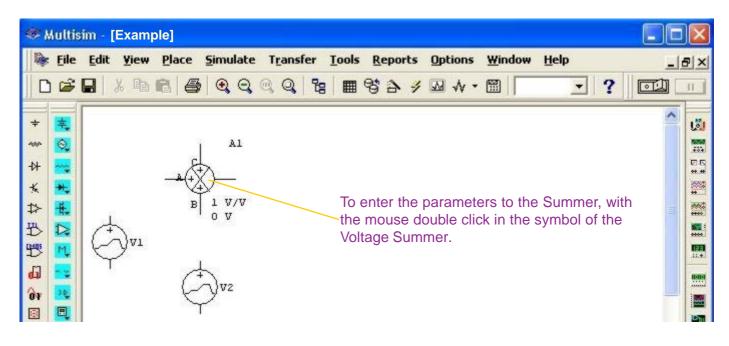

After having entered the fourteen points of the signal of the Input Interface; with the mouse make click in **Accept** to record the information

Storage of the signal of the Set Point in Multisim.

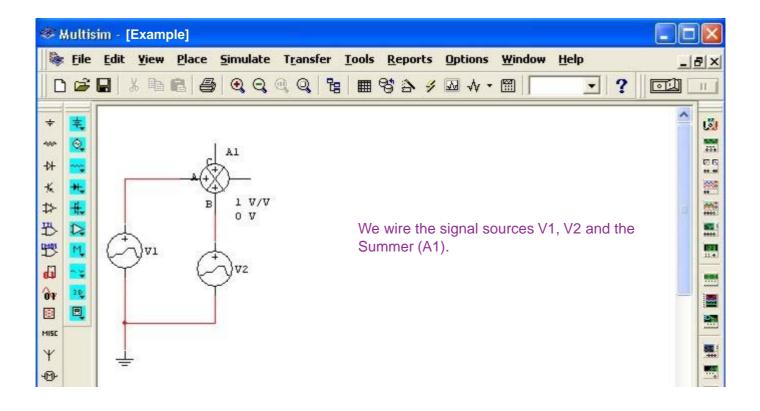

🏽 Multis	im - [Circuit1]				×
🛛 🖗 File	Edit Yiew Place Sir	nulate T <u>r</u> ansfer <u>T</u> oo Đຼ 🗨 🍳 🖁 🗄		P	8×
	Select a Component Database: Multisim Master Group: ▼ Sources Family: ♥ POWER_SOURC ♥ SIGNAL_VOLTAG ♥ SIGNAL_CURRE ♥ CONTROL_FUNC ♥ CONTROLLED_V ♥ CONTROLLED_C ♥ CONTROLLED_C ♥ CONTROLLED_C	nt Component: PIECEWISE_LINEAR_V AC_VOLTAGE AM_VOLTAGE CLOCK_VOLTAGE EXPONENTIAL_VOLTAGE FM_VOLTAGE PIECEWISE_LINEAR_VI PULSE_VOLTAGE WHITE_MOISE 3. With the mouse, make click here. 2. With the mouse, make click here.	Symbol (ANSI)		
Ţ	📚 Circuit 1			<u>.</u>	

Point	Time (s)	Voltage
1	0	3
2	0.009	3

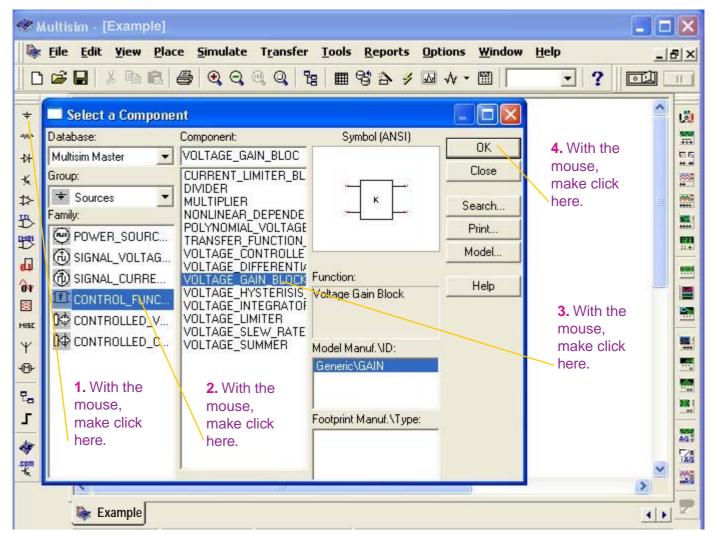
Tabulation of the signal of the Set Point.

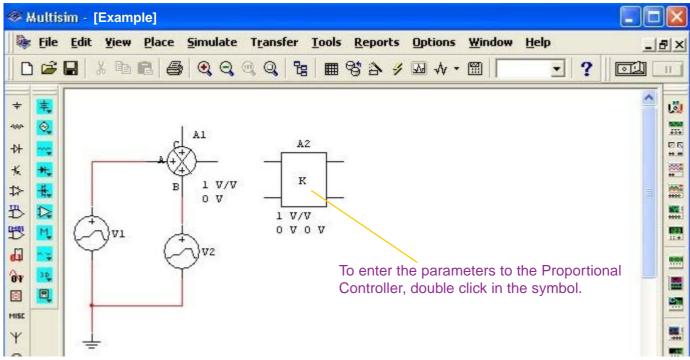


After having entered the two points of the signal of the Set Point; with the mouse click in **Accept** to record the information

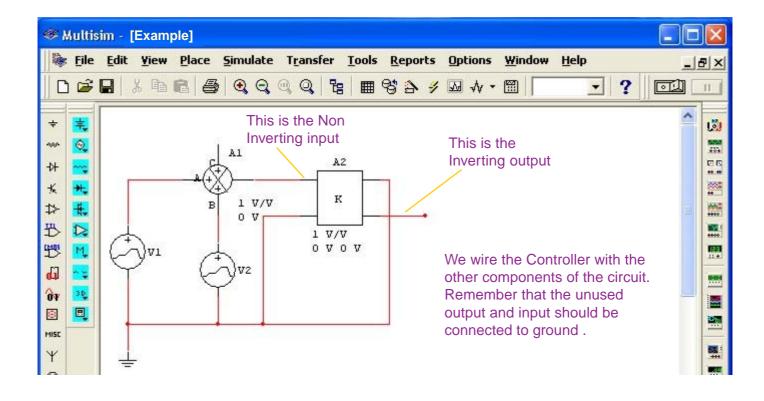

The Summer with the signals of the Input Interface and Set Point.

We will insert the **Summer**.

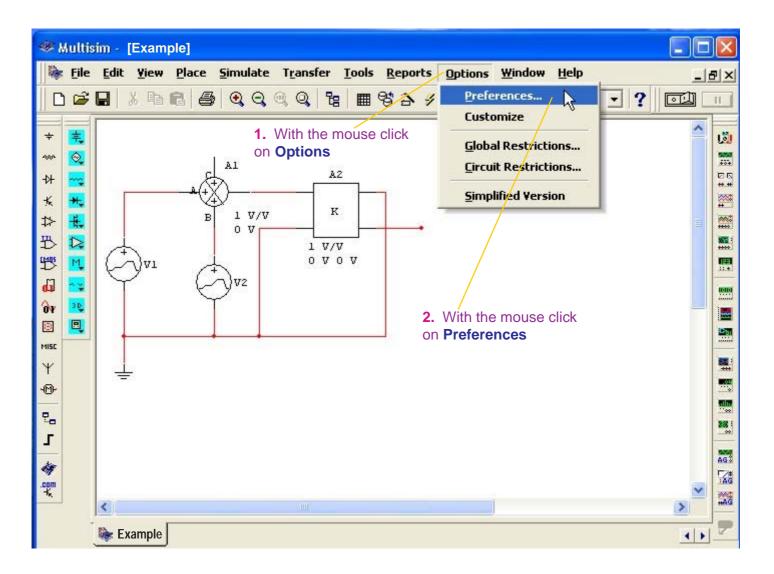

🎯 Multisim - [E	xample]					
		mulate T <u>r</u> ansfer <u>T</u> oo €				_ & ×
····· Image: Constraint of the sector o	im Master 💌	nt Component: VOLTAGE_SUMMER CURRENT_LIMITER_BL DIVIDER MULTIPLIER NONLINEAR_DEPENDE POLYNOMIAL_VOLTAGE TRANSFER_FUNCTION VOLTAGE_CONTROLLE VOLTAGE_OIFFERENTI// VOLTAGE_GAIN_BLOCK VOLTAGE_HYSTERISIS VOLTAGE_INTEGRATOF VOLTAGE_SLEW_RATE VOLTAGE_SLEW_RATE VOLTAGE_SUMMER VOLTAGE_SUMMER VOLTAGE_SLEW_RATE	Symbol (ANSI)	OK Close Search Print Model Help	 4. With the mouse, make click here. 3. With the mouse, make click here. 	
🎼 Exa	mple				<u> </u>	

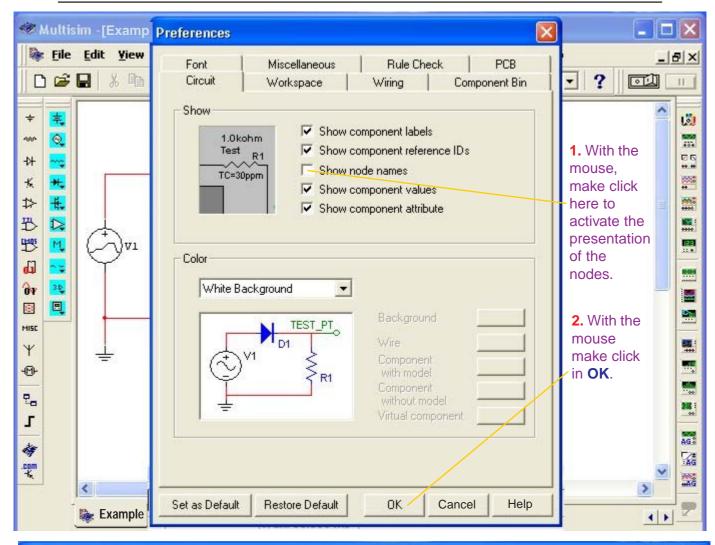


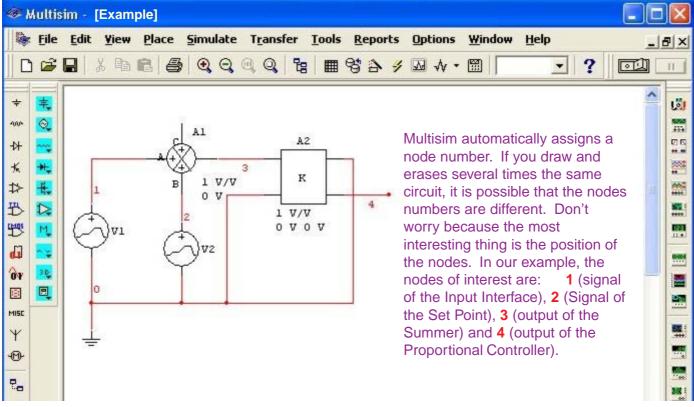
<i>دی</i> ا	Aultis	sim - [Exam	ple]										_ 0	×
	<u>F</u> ile	Edit	<u>Y</u> iew	Plac	e	Simulate	Transfer	Tools	<u>R</u> eport	5 Option	is <u>₩</u> indo	ow <u>H</u> elp			P ×
	1 🖻		X 🖻	8	8	CONTROL	_FUNCT	ION_BLO	CKS				• ? I	<u>می</u> ا [11
+ ☆ ★ ★ ☆ № 日 20 1 4 ★ ★ ☆ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		¢	-)v1	•	B VV	Input Input Input Input Outp	Display Va t A Offset Vo t B Offset Vo t C Offset Vo t A Gain (KA t B Gain (KA t C Gain (KC out Gain (K): out Offset Vo	oltage (VAO oltage (VBO oltage (VCO):):): ltage (OVO:	s): s): s): 	0 0 1 1 1 0		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	We will make the gains of inputs A, B C and the output equal to unity. In this case they coincide with the default values. With the mouse make click in Accept .	,	
		<												>	"AG
	.44	📚 Ez	xample												Z



The Proportional Controller with the summer and input signals.

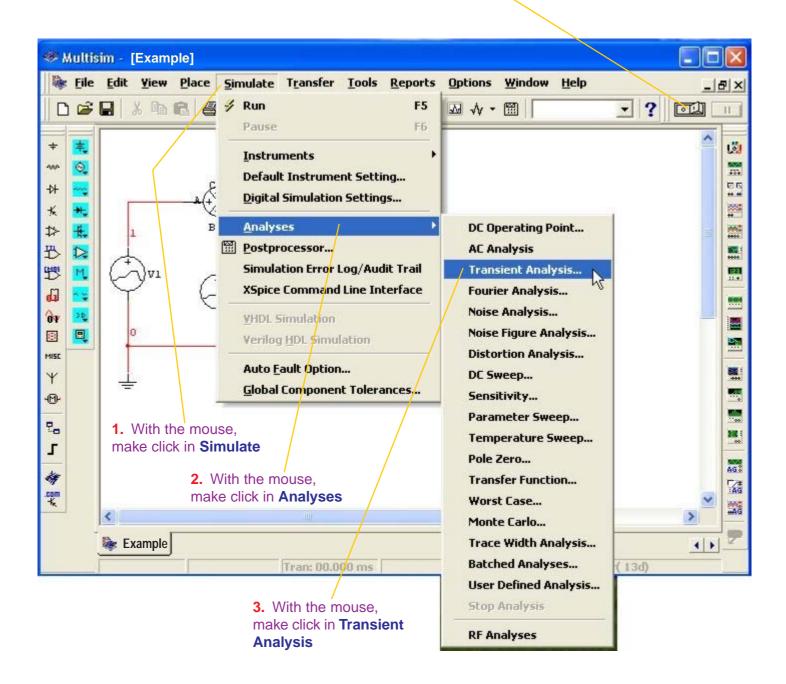

<u>ا چې</u>	Aultis	im - [Example]			×
	<u>F</u> ile	Edit Yiew Plac	e <u>S</u> imulate T <u>r</u> ansfer <u>T</u> ools <u>R</u> eports <u>O</u> ptions <u>W</u> indow <u>H</u> elp	- 8	×
) 🖻		≝ qqq q % ⊞ % À ≠ ∞ √ · ∭	I III III]
÷	夷		CONTROL_FUNCTION_BLOCKS	<u> </u>	21
-100-	0		Label Display Value Fault		
₩	**		Voltage Gain (E):	*	
*	÷.		Input Offset Voltage (VOS): 0 V ÷	- 10	*
巴	₽		Output Offset Voltage (8VOS): 0 V +	*	
E C	M.	$[\bigcirc^{\forall^1}]$			1
ο Οv	30		According to the considerations of the	240.00	
8			According to the considerations of the example, the Proportional Controller's gain is		
			equal to unity. In this case we don't make any variation.	100	
-@-		÷			
2.			With the mouse make click in Accept .	34	·
Г				-	**
-					G: AG
.com K		<	Replace Accept Cancel Info Help	A.A	AG
		📚 Example			2


Activation of the Nodes in the Circuit, with Multisim


A node is a junction point of two or more component in a circuit. The node is important because it is the reference point to observe the signals of interest in specific points of the circuit.

For this reason it is better to activate the presentation of the nodes, in case that they are not activated, in the following way:

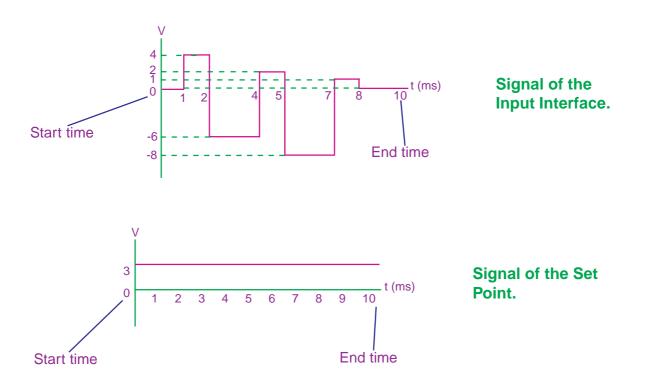
Virtual Laboratory MultiSIM



Transient Analysis Configuration of the Proportional Controller.

DON'T TURN ON THE SWITCH of Multisim.

Follow the following procedure:



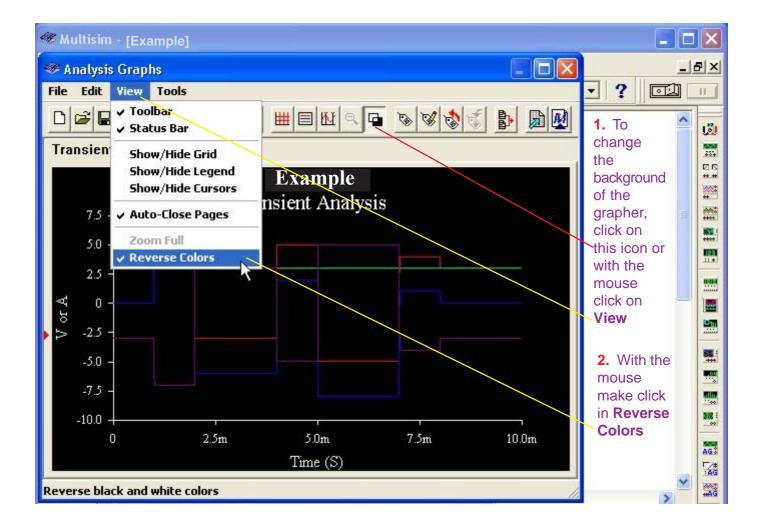
- 35 -

Virtual Laboratory MultiSIM

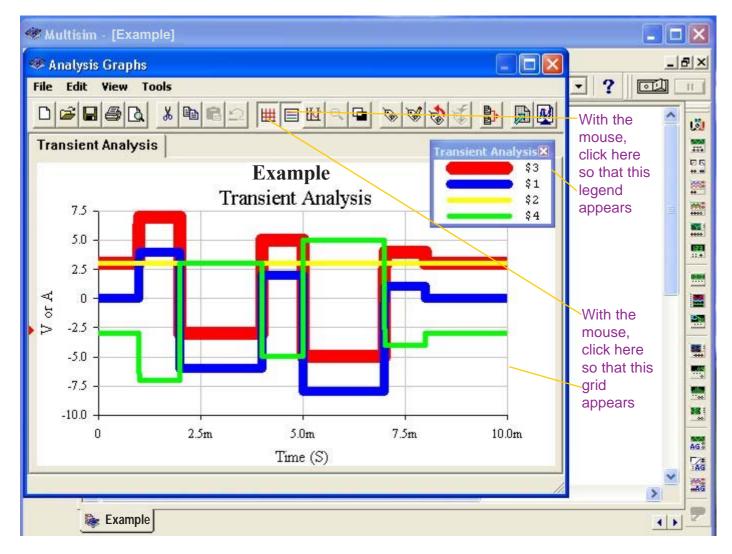
File	Edit Yiew Place Simulate Transfer Lools Reports Options Window Help ■ > ■ ●	ء∟ _ الت⊡ ? •
	ansient Analysis Image: Section	1. With the mouse, make click here and write the Start time that according to the signals it is zero
	More>> Simulate Apply Cancel Help	×

3. With the mouse make click in Output variables

- 36 -


Virtual Laboratory MultiSIM

	nulate T <u>r</u> ansfer <u>T</u> ools <u>R</u> eports Options <u>W</u> indow Q Q @ Q B B B C A 4 M - M	
Transient Analysis		
Analysis Parameters Output v	Townships a second second 1	-1
Variables in circuit	Selected variables for analysis	
All variables	All variables	
\$1 \$2	1. With the mouse,	
\$3	make click in node 1	to I
\$4 aa1#branch_1_0	Add> select it	
aa2#branch_1_0	> Add>	
vv1#branch vv2#branch	2. With the	
	< Remove < mouse, make	
The Header Hard	click in Add	
Filter Unselected Variables		
More >>	Simulate Apply Cancel Help	
mole //	Cauca Nobia Cauca Lieb	
	IN I	>


🦇 Multisim - [Example]	×
File Edit View Place Simulate Transfer Tools Reports Options Window Help	Ð×
┃ D 🛎 🖬 🐇 🛤 🚭 🔍 Q, Q, 🍾 🎟 🍪 A ≠ 🖾 🗸 - 🕮 🚺 💽 🤶 🦉	11
🛨 Transient Analysis	لقا
Analysis Parameters Output variables Miscellaneous Options Summary	10000 4334
-D+ Variables in circuit Selected variables for analysis	## ##
★ All variables All variables	*
\$2 1 \$1	
The state of the s	
aa1#branch_1_0	11.0
vv1#branch analysis. Repeat the	
process for hode 2,	
د <u>Remove</u> د node 3 and node 4.	*
The United Michael I	
	982 1
More >> Simulate Apply Cancel Help	AG3
	AG AG
	mAG
🔯 Example	1

Virtual Laboratory MultiSIM

Multisim - [Example]	
<u>File Edit Yiew Place Simulate Transfer To</u>	ols <u>Reports</u> Options <u>Window H</u> elp
) 🛎 🖬 👗 🖷 🖪 🚭 🔍 Q, Q, 🍡	
Transient Analysis	🛛 🔺
Analysis Parameters Output variables Miscellaneous O	
Variables in circuit	Selected variables for analysis
All variables	All variables
aa1#branch_1_0 aa2#branch_1_0 vv1#branch vv2#branch > Add < Remove	→ \$1 \$2 \$3 \$4 After having selected the nodes 1, 2, 3, and 4 click on Simulate
Filter Unselected Variables	
More >> Simulate Ap	pply Cancel Help

Presentation of the Proportional Controller's signals

With the mouse, click here so that this grid appears

For the legend of the Transient Analysis:

The **red** color (node 3) corresponds to the output signal of the **Summer**.

The **blue** color (node 1) corresponds to the signal of the **Input Interface**.

The **yellow** color (node 2) corresponds to the signal of the **Set Point.**

The **green** color (node 4) corresponds to the output signal of the **Proportional Controller**.

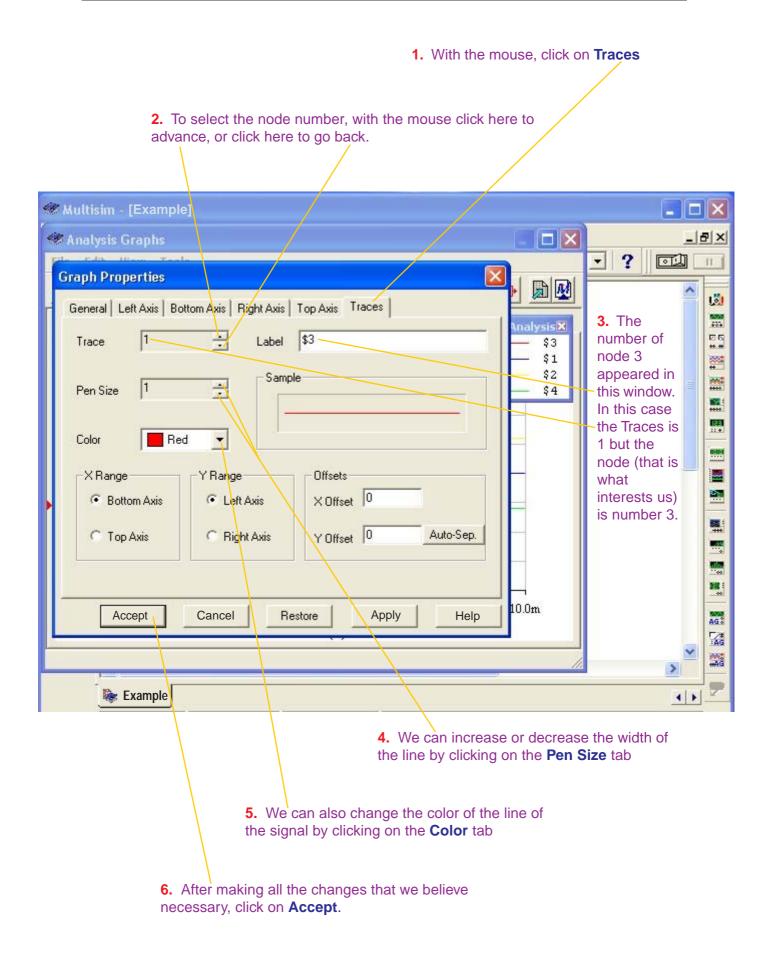
Transient Analysis 🗙

\$3

\$1 \$2

\$4

Width and Color for the presentation of the output signals.

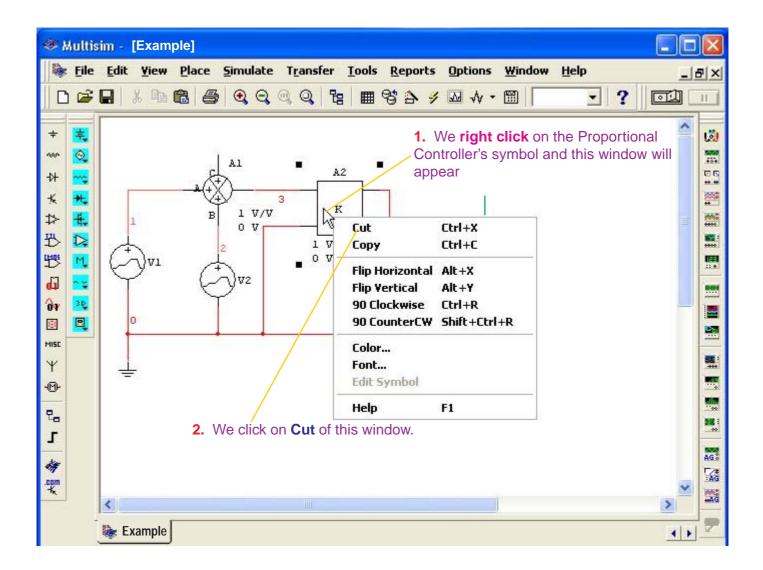

The presentation of the signals in the Analysis Graphs has a width of a typographical point with the purpose of taking measurements accurately.

However, to be able to distinguish the signals one from the other, we have opted to increase the width of the lines in 10 points for the red color, 7 points for the blue color, 4 points for the green color and 4 points for the yellow color, in the following way:

🥮 Mi	ultisim - [Example]				×
@ A	nalysis Graphs			غلب ا	9 ×
File	Edit View Tools			• ? 💷 🗆	11
	Undo		To 😻 🤡 🍯 🛃 🛃	~	لقا
Tra	Cut Copy				5000 3000
	Paste	Example	Transient Analysis 🗙		
	Clear Pages	Transient Analysis	\$1		**
	Copy Properties	Transfelit Fularysis	\$4		****
	Paste Properties				
	Page Properties				11.0
∢	Properties				
r or A					
> >	-2.5				
	-5.0 -				***
	-7.5				
	-10.0				388 :
	0 2	.5m 5.0m	7.5m 10.0m		AG.
_		Time (S)			AG
Edit p	roperties			>	
	📚 Example				2

1. With the mouse make click in Edit.

2. With the mouse make click in **Properties**.


Virtual Laboratory MultiSIM

📽 Analysis Graphs 📃 🗖 🗙	
Graph Properties	
General Left Axis Bottom Axis Right Axis Top Axis Traces Trace 1 Label \$3 \$1 Pen Size 10 Sample \$3 \$1 \$2 \$4 Color Red Offsets X Range Y Range Offsets * Bottom Axis * Left Axis X Offset * Top Axis * Right Axis Y Offset Accept Cancel Restore Help Apply 10.0m	Observe that we have changed the width of node 3 to 10 typographical points

🖤 Analysis Graphs	
Graph Properties	
General Left Axis Bottom Axis Right Axis Top Axis Traces	
Trace 3 🕂 Label \$2	sisX \$3
Pan Size 4 Sample	 \$1 \$2 \$4 In this case we have changed the
Color Yellow Silver	width of node 2 to 4
X Range Red ge Offsets Former Axis X Offset	points. In addition, the
C Top Ax Blue Fuchsia Aqua White ▼	color been changed to yellow
Accept Cancel Restore Apply Help 10.0m	
lime (S)	

The Derivative Controller with the summer and output signals.

We take the circuit of page 31 where we have wired the signal of the Input Interface, the Set Point, the Summer and the Proportional Controller. This Proportional Controller should be removed to replace it for the Derivative Controller.

The Proportional Controller is eliminated; we proceed to insert the Derivative Controller in the way indicated on the following page.

Virtual Laboratory MultiSIM

🍩 Multi	sim - [Circuit1]					
	.	mulate Trੁansfer Ioo •	- The second		_ _ ? 💷	
+ +<	Select a Compone Database: Multisim Master Group: Sources Family: POWER_SOURC SIGNAL_VOLTAG SIGNAL_VOLTAG SIGNAL_CURRE CONTROLLED_V CONTROLLED_V CONTROLLED_C Not controlled_C	Component: VOLTAGE_DIFFERENTI CURRENT_LIMITER_BL DIVIDER MULTIPLIER NONLINEAR_DEPENDE POLYNOMIAL_VOLTAGE TRANSFER_FUNCTION_ VOLTAGE_CONTROLLE VOLTAGE_OIFFERENTIA VOLTAGE_GAIN_BLOCK VOLTAGE_HYSTERISIS VOLTAGE_HYSTERISIS VOLTAGE_SLEW_RATE VOLTAGE_SLEW_RATE VOLTAGE_SUMMER 2. With the mouse, make click here.	Symbol (ANSI)	OK Close Search Print Model Help	 4. With the mouse, make click here. 3. With the mouse, make click here. 	
	Eircuit1				<u>.</u>	

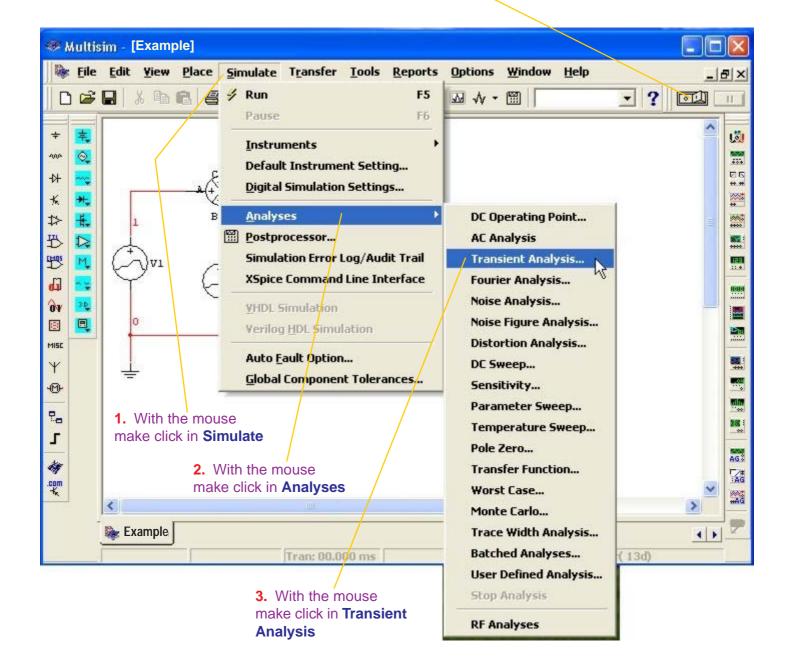
🧇 Multis	n - [Example]	
🛛 🔯 🕅 🙀	Edit Yiew Place Simulate Transfer Tools Reports Options Window Help	Ð×
0 🖻	▋ ※ ℡ Ē ❹ € € € € ቘ ቔ \$ ♪ ∅ ↔ • 💽 💽 [□□□]	11
÷ ☆<	Non Inverting Input Non Inverting Output A1 Non Inverting Output A2 A2 A2 A2 A2 A2 A2 A2 A2 A2	

Configuration of the Derivative Controller's Parameters

Multisim - [Example]	
Image: Second state Transfer Tools Reports Options Window Here Image: Descend state	elp ?
+ + M< Q ++ M ★ + ★ + ★ + ↓ I <	 With the mouse, click here, erase and write 0.001 With the mouse, click here, erase and write -13
 Y Y	3. With the mouse, click here, erase and write 13

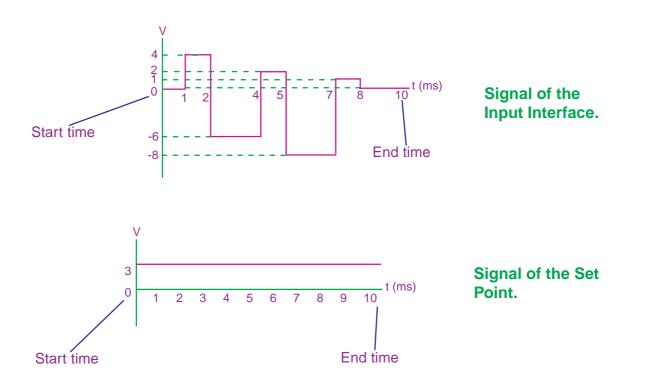
The Derivative Controller's output is:

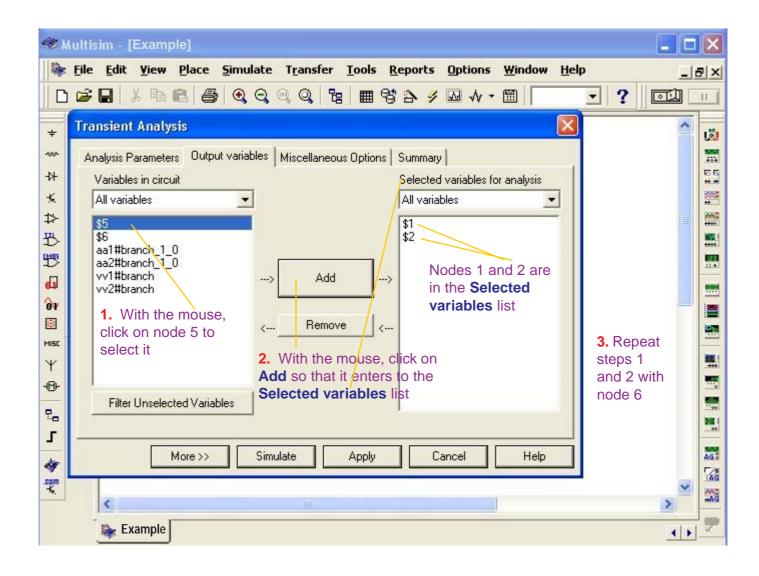
$$Vout(t) = K \frac{d Vin}{dt}$$

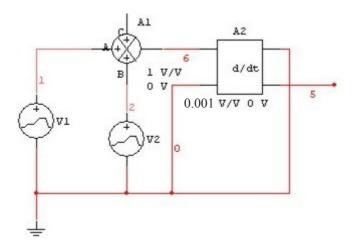

For the considerations of the example (see page 21), the RC constant is of 1 millisecond. Also, K = R.C is expressed in seconds (see page 14), then we have that: K = 0.001

For the considerations of the example (see page 21), the Derivative Controller will use a dual-supply with +Vcc = +15V and -Vcc = -15V then (see page 15) the Output Voltage Lower Limit will be -13 V and the Output Voltage Upper Limit is 13 V.

Transient Analysis Configuration of the Derivative Controller


DON'T TURN ON THE SWITCH of Multisim.

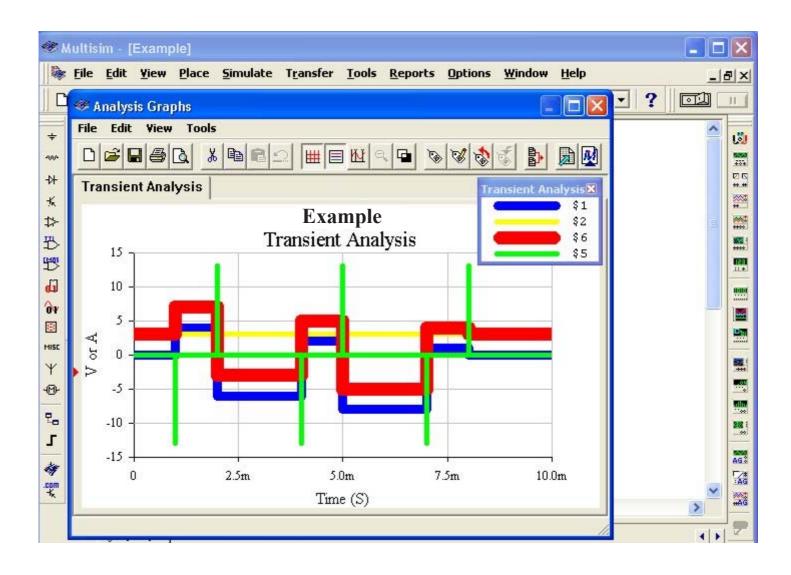

Follow the following procedure:



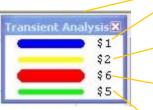
۲ () ۱۹	ultisim - [Example]	
11 *	<u>File Edit Yiew Place Simulate Transfer Tools Reports Options Window Help</u>	<u></u>
	☞ 🖬 👗 📾 🚭 🔍 Q, Q, 🖫 🖩 🧐 🏷 🖉 🚸 • 🖾 📗	
」 ¹ ○ 4 ³ ○ 5 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Transient Analysis Analysis Parameters Output variables Miscellaneous Options Summary Initial Conditions Automatically determine initial conditions Image: Condition sec Image: Condition sec Parameters Start time (TSTART) 0 sec Reset to default End time (TSTOP) 0.001 sec Image: Condition sec Image: Condition sec Image: Maximum time step settings (TMAX) 100 Image: Condition sec Image: Condition sec Image: Maximum time step (TMAX) 100 sec Image: Condition sec Image: Maximum time step (TMAX) 100 sec Image: Condition sec Image: Condition sec 100 sec Image: Condition sec	1. With the mouse, click here and write the Start time that according to the signals is zero
** 	More >> Simulate Apply Cancel Help	
	Example	<u>,</u>

3. With the mouse, make click in **Output variables**

Looking at the circuit, the nodes of interest are:


- node 1: Signal of the Input Interface.
- node 2: Signal of the Set Point.
- node 6: Summer output.
- **node 5:** Output of the Derivative Controller.

(B)	Multisim - [Example]	×
	Eile Edit Yiew Place Simulate Transfer Tools Reports Options Window Help	N×
) ☞ 🖬 👗 🚳 🔍 Q, Q, 🏗 🖩 😚 🏱 🖉 小 - 🕮 🚺 💽 💽 🚺	н
÷	Transient Analysis 🛛 🔼	لقًا
-004	Analysis Parameters Output variables Miscellaneous Options Summary	5555
-1+	Variables in circuit Selected variables for analysis	00 **.**
×	All variables	*
\$> ₽	aa1#branch_1_0 aa2#branch_1_0 \$2	
では	aa2#branch_1_0 \$2 vv1#branch \$5 vv2#branch \$6	
J.	> Add>	
Ôv		
8	< Remove <	-
MISC		
1 -00-		
2.0	Filter Unselected Variables	****
L L		
-	More >> Simulate Apply Cancel Help	AG.
.com		
~		AG
	Example I	Z


In the **Selected variables** list we have nodes 1, 2, 5 and 6 selected.

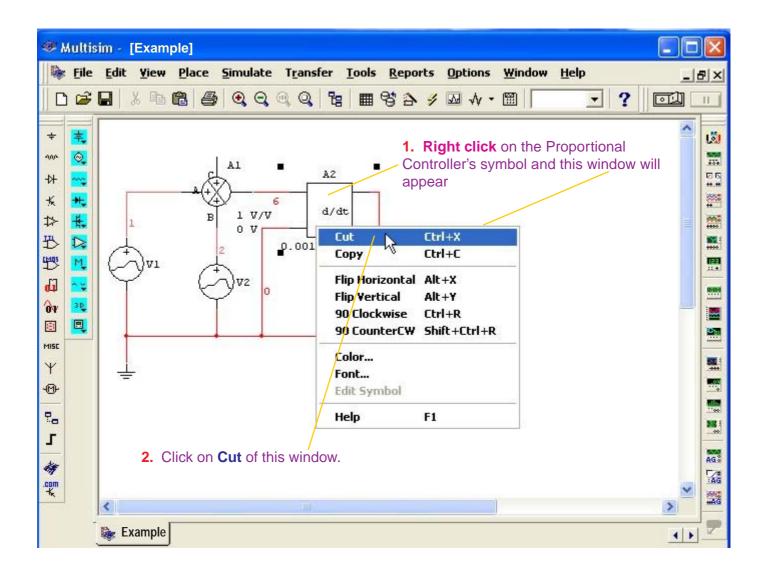
To observe the signals of the selected nodes, with the mouse click on **Simulate**

Presentation of the Derivative Controller's signals.

For the legend of the Transient Analysis:

The **blue** color (node 1) corresponds to the signal of the **lnput Interface.**

The **yellow** color (node 2) corresponds to the signal of the **Set Point.**

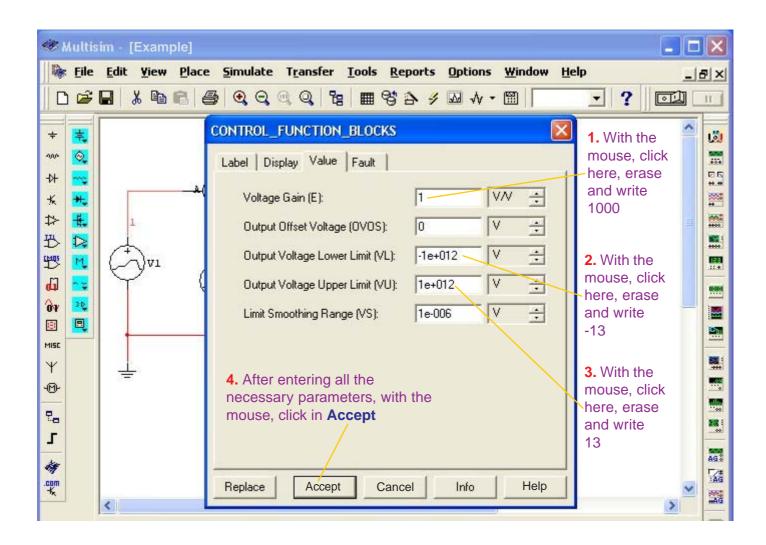

The **red** color (node 6) corresponds to the output signal of the **Summer**.

The **green** color (node 5) corresponds to the output signal of the **Derivative Controller**.

For the width and color of the signals, see pages 39, 40 and 41.

The Integral Controller with the Summer and input signals.

We take the circuit of page 43 where we have wired the signals of the Input Interface, the Set Point, the summer and the Derivative Controller. This Derivative Controller should be removed to replace it for the Integral Controller.


The Derivative Controller has been eliminated; we proceed to insert the Integral Controller in the way indicated on the following page.

Virtual Laboratory MultiSIM

11	im - [Circuit1] Edit Yiew Place Si Gold & The The Si	mulate Transfer Ioo Đ, Q, @, Q, Ἐ Ħ	- The second		×ם ـ بور ب 20 -
★ ◇ ★ ★ ☆ \$P\$ □ ◎ ★ ★ ☆ \$P\$ □ ◎ \$P\$ 1 ∩ \$P\$ 1	Select a Compone Database: Multisim Master Group: Sources Family: POWER_SOURC SIGNAL_VOLTAG SIGNAL_VOLTAG SIGNAL_CURRE CONTROLLED_V CONTROLLED_V CONTROLLED_C Not CONTROLLED_C	nt Component: VOLTAGE_INTEGRATO CURRENT_LIMITER_BL DIVIDER MULTIPLIER NONLINEAR_DEPENDE POLYNOMIAL_VOLTAGE TRANSFER_FUNCTION_ VOLTAGE_CONTROLLE VOLTAGE_DIFFERENTI# VOLTAGE_GAIN_BLOCK VOLTAGE_HYSTERISIS VOLTAGE_INTEGRATOF VOLTAGE_SLEW_RATE VOLTAGE_SUMMER 2. With the mouse, make click here.	Symbol (ANSI)	OK Close Search Print Model Help	4. With the mouse, make click here.
-	📚 Circuit 1			/-	

@ h	dultis	im - [Example]	
	<u>F</u> ile	Edit Yiew Place Simulate Transfer Tools Reports Options Window Help	. a ×
) 🖻	▋ ¾ ℡ 健 母 Q Q Q 階 ■ ช ♪ ダ ⋈ ᡧ - 웹 💽 💽 🤋 🗔	Ш
+ ☆ ★ ★ ☆ \$P\$ 60 15 + ★ ☆ \$P\$ 10 15 15 15 15 15 15 15 15 15 15 15 15 15		Non Inverting input Non Inverting Output Observe that after inserting the Integral Controller and wiring the Controller and w	
¢ Pe		To enter the parameters of the Integral Controller, double click on its symbol.	

Configuration of the Integral Controller's Parameters

The Integral Controller's output is:

Vout(t) = K
$$\int (Vin(t) dt)$$

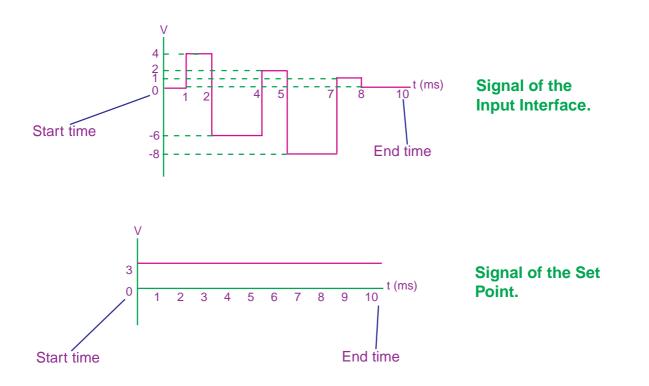
also

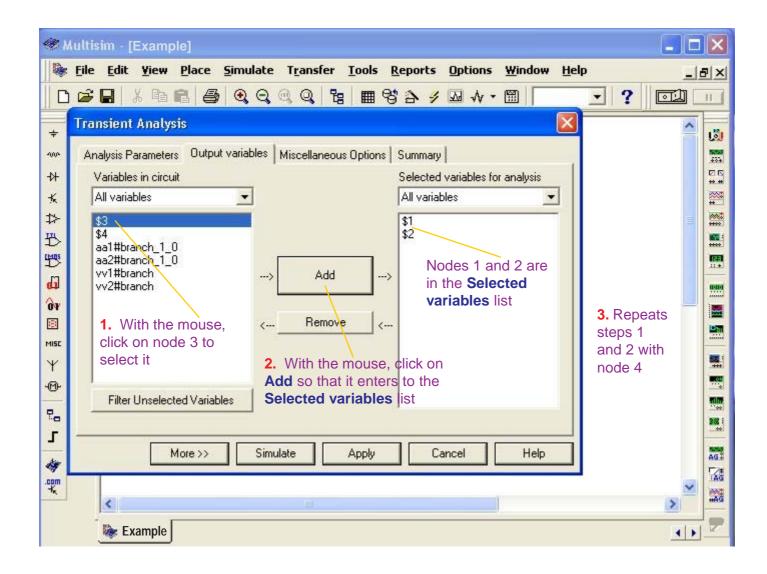
$$K = \frac{1}{R.C}$$
 (expressed in seconds)

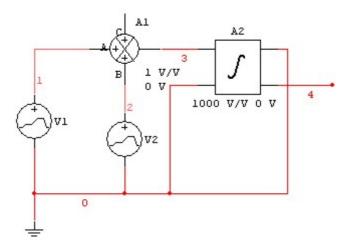
For the considerations of the example (see page 21), the RC constant is 1 millisecond. Also, K is expressed in seconds (see page 16), then we have that: K = 1/0.001 = 1000

For the considerations of the example (see page 21), the Integral Controller will have a dual-supply with +Vcc = +15V and -Vcc = -15V then (see page 17) the Output Voltage Lower Limit will be -13 and the Output Voltage Upper Limit it is 13

Transient Analysis Configuration of the Integral Controller.


DON'T TURN ON THE SWITCH of Multisim.

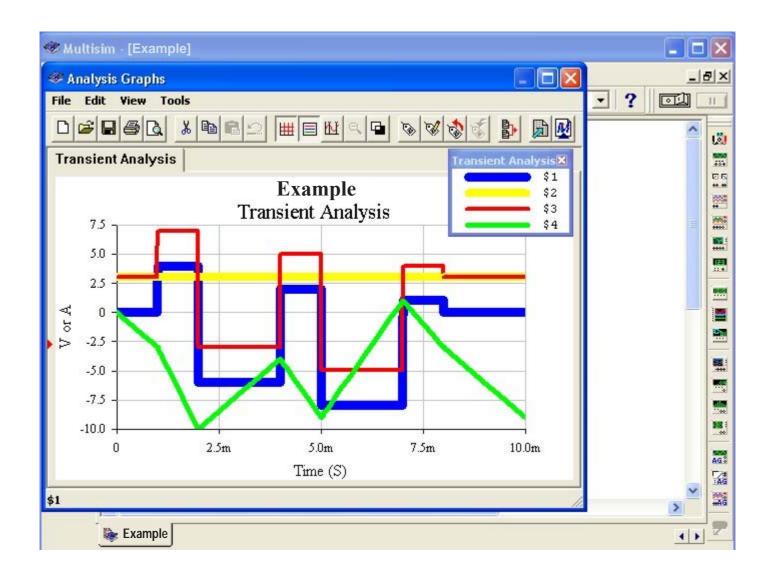

Follow the following procedure:


🏶 Multisim - [Example			
	ace Simulate Transfer Iools Reports Run F5 Pause F6 Instruments Default Instrument Setting	Options Window Help	
	Digital Simulation Settings B Analyses Postprocessor Simulation Error Log/Audit Trail XSpice Command Line Interface	DC Operating Point AC Analysis / Transient Analysis Fourier Analysis	
	YHDL Simulation Verilog HDL Simulation Auto Fault Option Global Component Tolerances/	Noise Analysis Noise Figure Analysis Distortion Analysis DC Sweep Sensitivity	
1. With the click on Sim		Parameter Sweep Temperature Sweep Pole Zero Transfer Function Worst Case	
Example	Tran: 00.000 ms 3. With the mouse,	Monte Carlo Trace Width Analysis	(13d)
	click on Transient Analysis	RF Analyses	

😻 Multisim - [Example]							
1	<u>File Edit Yiew Place Simulate Transfer Tools Reports Options Window Hel</u>						
	☞ 🖬 👗 📾 📾 🚭 🔍 ♀, ལ, ལ, ષ; 🖩 Ფ 孜 🖌 ∞ 級 사 • 🕮						
爆供长米 \$	Analysis X Analysis Parameters Output variables Miscellaneous Options Summary Initial Conditions Initial conditions Initial conditions Parameters Start time (TSTART) 0	1. With the mouse, click here and write the Start time that according to the signals					
	End time (TSTOP) 0.001 sec Reset to default Image: Maximum time step settings (TMAX) 2. With the mouse, click here	is zero					
¥ ∲ <mark>₀</mark> ,	Minimum number of time points Maximum time step (TMAX) Te-005 sec Generate time steps automatically and write the End time that according to the signals is 10 ms or 0.01 sec						
」	More >> Simulate Apply Cancel Help						

3. With the mouse click on **Output variables**

Looking at the circuit, the nodes of interest are:


- node 1: Signal of the Input Interface.
- node 2: Signal of the Set Point.
- node 3: Summer output.
- node 4: Output of the Integral Controller.

_							
æ)	Multisim - [Example]						×
	<u>Eile Edit Yiew Place</u>	e <u>S</u> imulate T <u>r</u> ansfer	Tools Reports	Options Wi	ndow <u>H</u> elp	ولد ا	9 ×
) 🖻 🖬 🕺 🖪 🖬 🕯	5) Q, Q, Q, B	1 2 2 3	₩ • 1		• ? @l [11
÷	Transient Analysis					~	لقًا
-004-	Analysis Parameters Out	tput variables Miscellaneou:	s Options Summary	1			500 500
-6+	Variables in circuit		Selected	variables for ana	lysis		20
ĸ	All variables	-	All variat	oles	•		*
⇒	aa1#branch_1_0 aa2#branch_1_0		\$1 \$2				****
步 [MII]5	vv1#branch		\$3				
E CE	vv2#branch	> Add	> \$4				
04 04							
		K Remove	×				
MISC		2-					
Ψ							
•0•	Filter Unselected Var	iables					
20	-						388 1
Г	More >>	> Simulate	Apply Ca	ancel	Help		AG.
4	Mole 7						AG 3
.com	<					>	A G
	1000						-
	Example						

In the **Selected variables** list we have the nodes 1, 2, 3 and 4 selected.

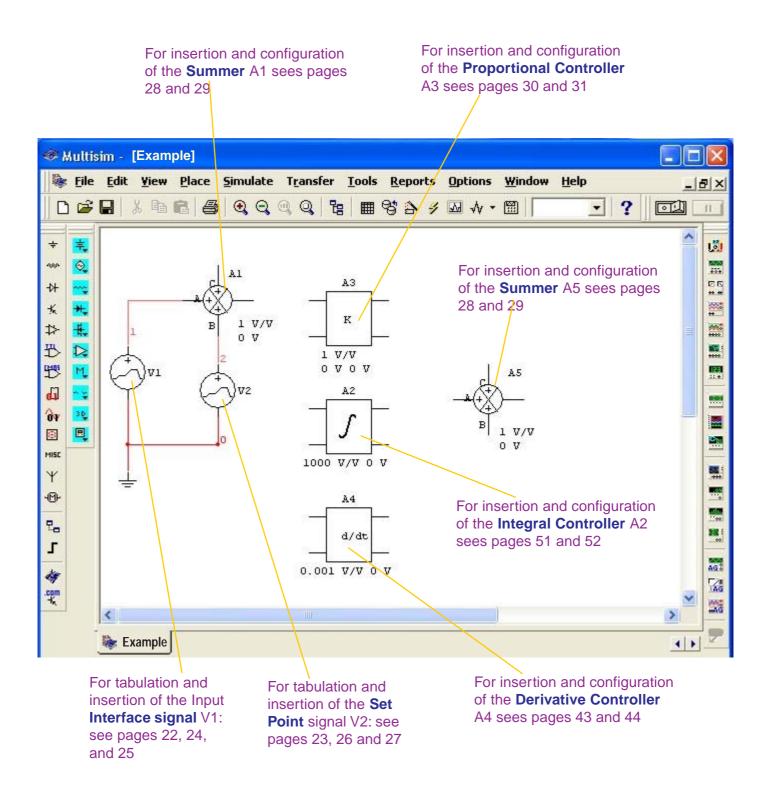
To observe the signals of the selected nodes, click on **Simulate**

Presentation of the Integral Controller's signals

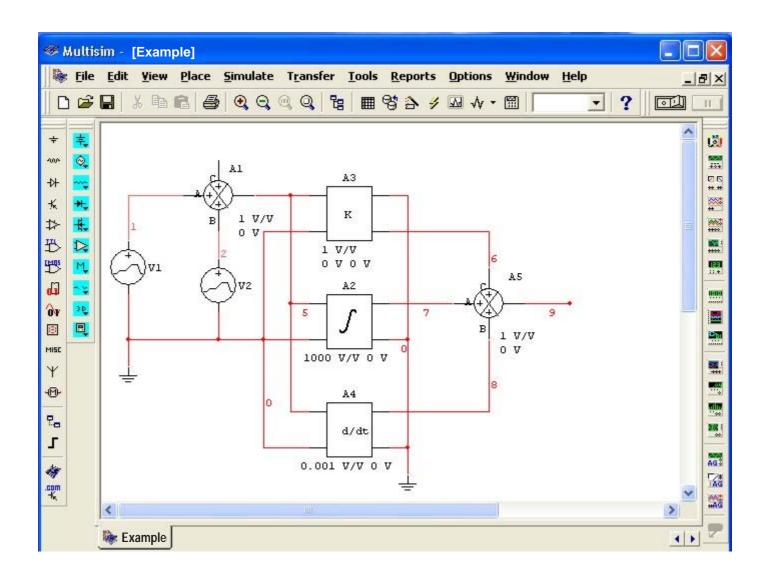
For the legend of the Transient Analysis:

	Transient Analysis 🔀
	\$1
-	\$2-
	\$3
	\$4

The **blue** color (node 1) corresponds to the signal of the **lnput Interface.**


- The **yellow** color (node 2) corresponds to the signal of the **Set Point.**

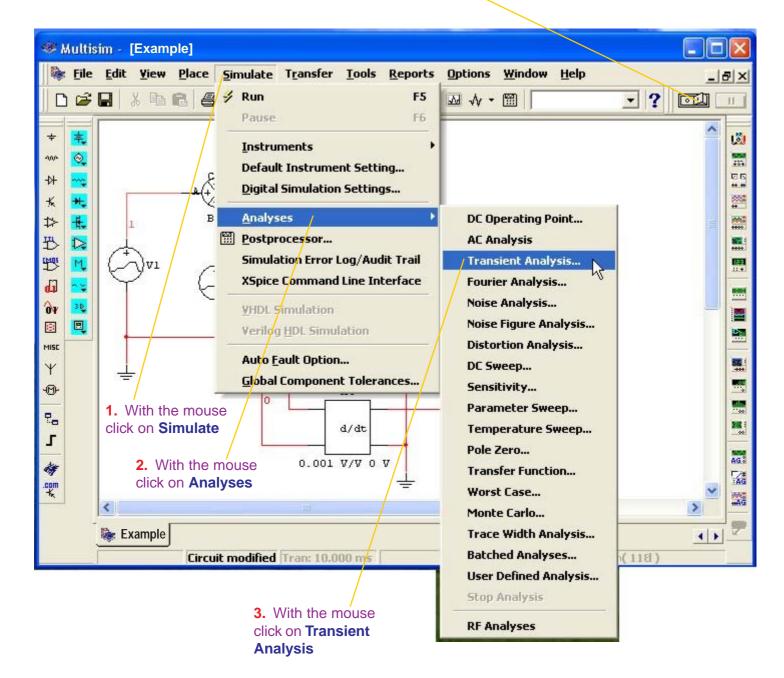
The **red** color (node 3) corresponds to the output signal of the **Summer**.


The **green** color (node 4) corresponds to the output signal of the **Integral Controller**.

For the width and color of the signals, see pages 39, 40 and 41.

The Proportional-Integral-Derivative Controller (PID). (according to the example of page 20).

Determination of the PID Controller's nodes



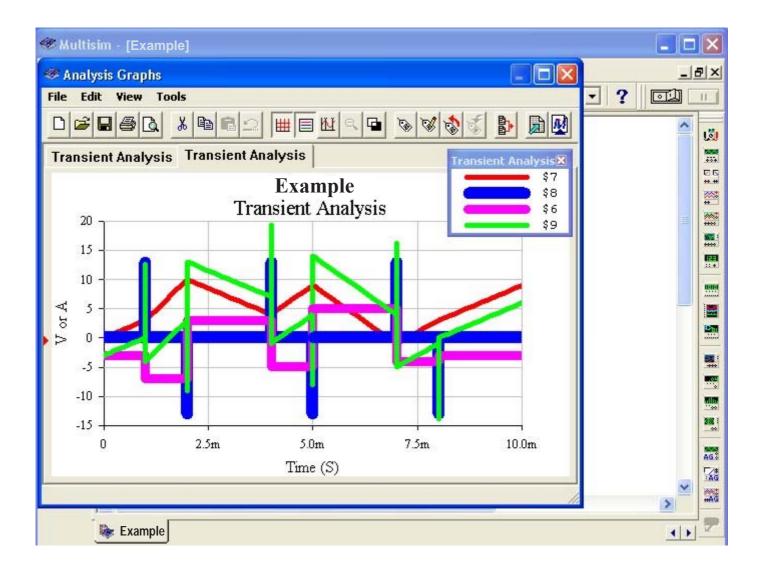
In the circuit, we will take the outputs of the Proportional Controller (**node 6**), Integral Controller (**node 7**), Derivative Controller (**node 8**) and Proportional-Integral- Derivative Controller PID (**node 9**).

Transient Analysis Configuration of the Proportional-Integral- Derivative Controller (PID).

DON'T TURN ON THE SWITCH of Multisim.

Follow the following procedure:

jile Edit Yjew Place Simu 译日本中国子会	late T <u>r</u> ansfer <u>T</u> ools <u>R</u> Q Q Q H III 93		• <u>H</u> elp
Transient Analysis Analysis Parameters Output varia	bles Miscellaneous Options	Summary	
Variables in circuit All variables \$5 \$6 \$7 \$8 \$9 aa1#branch_1_0 aa2#branch_1_0 aa3#branch_1_0 aa3#branch_1_0 aa5#branch_1_0 vv1#branch vv2#branch	Add> Add> < Remove < 4. Repeat steps 2 and 3 with node 2	Selected variables for analysis All variables 2. With the mous click on node 1 3. With the mouse click on Remove	 Nodes 1 and 2 of the Selected variables should be remove because the nodes of interest


🥮 M	ultisim - [Example]	
44	File Edit Yiew Place Simulate Transfer Tools Reports Options Window Help 译品 X 陶 配 圖 ④ ④ 및 및 및 智 田 왕 A ダ 교 사 ፣ 岡	-18×
┗ ┅ @ 禾 # 圆 😵 🖬 嬉 🗄 ★ ★ ☆ 🕈	\$3 aa1#branch_1_0 Iist aa2#branch_1_0 Remove aa3#branch_1_0 1. With the mouse, n aa5#branch_1_0 Icick on node 6 to vv1#branch select it	Repeat teps 1 and 2 with iodes 7, 5, and 9
diff com	More >> Simulate Apply Cancel Help	

(،	Multisim - [Example]	×
	File Edit Yiew Place Simulate Transfer Tools Reports Options Window Help	Ð×
) 🖆 🖬 🍐 📾 🚭 🚭 🔍 🔍 📲 😵 🏠 🖌 🖾 🧄 - 🖾 🚺 📃 💽 💽 💽	Ш
÷	Transient Analysis	1.21
~~~ -}}-	Analysis Parameters Output variables Miscellaneous Options Summary	505 333 2 10
¥	Variables in circuit     Selected variables for analysis       All variables     All variables	**
☆ ₽	\$1 \$2 \$5 \$8	
55 6	aa1#branch_1_0 aa2#branch_1_0	
ôv ⊠	aa3#branch_1_0 aa4#branch_1_0 aa5#branch_1_0	
MISC	vv1#branch < Remove < vv2#branch	
¥ ®		
2.	Filter Unselected Variables	208 i 
۲ الا	More >> Simulate Apply Cancel Help	
.com *K	- · · · · · · · · · · · · · · · · · · ·	:AG
	Example I	2

In the **Selected variables** list we have the nodes 6, 7, 8 and 9 selected.

To observe the signals of the selected nodes, with the mouse click on **Simulate** 

# Presentation of the Proportional-Integral- Derivative Controller's signals (PID).



For the legend of the Transient Analysis:



The **red** color (node 7) corresponds to the output signal of the **Integral Controller**.

The **blue** color (node 8) corresponds to the output signal of the **Derivative Controller.** 

The color **fuchsia** (node 6) corresponds to the output signal of the **Proportional Controller**.

The **green** color (node 9) corresponds to the output signal of the **Proportional-Integral- Derivative Controller (PID)**.

For the width and color of the signals, see pages 39, 40 and 41.